The current course will provide a thorough presentation of Time Series Econometrics, the branch of Economics that deals with estimation and evaluation of theoretical results based on time series data. The goal of the course is to help you understand how Time Series Analysis works alone and/or in collaboration with Econometric Analysis by having you work on real data, rather than forcing you to memorize proofs of several theorems. The tools you will learn in this course will allow you to analyze time series data and derive policy conclusions.

RECOMMENDED TEXTBOOKS

OTHER USEFUL TEXTBOOKS
GRADING

There will be 1000 total points for the course, with the following breakdown:

300 Midterm Exam – The date will be announced in class.
300 Final Exam – The date will be announced in class.
150 Problem Sets (Section IV)
250 Research Paper

There will be three problem sets that will cover the three parts of section IV (10 points for parts A and B and 20 points for part C). In each problem set you will be asked to gather time series data and analyze them using the appropriate techniques taught in each part of section IV. I will give you more details on how to work on the problem sets as the course progresses. However, the problem sets are meant to be a short application of the material covered in the class.

The Research paper can be either a review of the theoretical techniques or an applied application based on the material covered in sections V and VI. The paper should be at most 10 to 15 pages long and should include an attachment with your data and computer programs. Students are encouraged to work in groups of two in the paper. Students are also expected to provide a short presentation of their final paper in class during the last week of classes. The research paper is due by Friday July 27th until 10 am in my office.
COURSE OUTLINE: This outline represents the order of topics to be covered in this course. However, some topics will receive more attention in lectures than others.

I. INTRODUCTION

1. Economic Theory
2. Economic versus Econometric Model
3. Decision Analysis

II. STATISTICS

1. A review in Statistics
2. Estimation and Forecasting

III. ECONOMETRICS

1. A review in Econometrics
2. Problem in Estimation
3. Special Issues
 Log Linear versus Linear Models
 Lagged Values
 Expectations
 Proxy Variables
 Partial Correlation Coefficients
 Trends
 Unit Root Test
 Lagged Dependent Variables
 Difference Equations

IV. TIME SERIES ANALYSIS

A. SMOOTHING TECHNIQUES

1. Simple Moving Average
2. Simple Exponential Smoothing
3. Holt’s - Winters’ Model

B. TIME SERIES DECOMPOSITION

 Seasonal – Trend – Cyclical and Irregular components
C. BOX & JENKINS OR ARIMA (p, d, q) ANALYSIS

1. Stationarity
2. Autocovariances - Autocorrelations
3. Autoregressive Processes
4. Moving Average Processes
5. ARMA(p, q) Processes
6. Extensions of ARMA(p, q) Processes
 - Integrated Processes – ARIMA(p, d, q)
 - Seasonal Models
 - Fractionally Integrated ARMA(p, q) Processes – ARFIMA(p, d, q)
7. Model Building
 - Identification Stage
 - Parameter Estimation Stage
 - Model Checking Stage
8. Forecasts

V. ISSUES IN TIME SERIES ANALYSIS

1. Testing for a unit autoregressive root
2. Difference versus Trend Stationary Processes
3. Co-integration (Single Equation Method – Engle & Granger procedure)

VI. VAR ANALYSIS

1. Introduction to VAR
2. Impulse response Function
3. Variance Decomposition
4. Hypothesis testing
5. Granger Causality
6. Cointegration - Johansen